3 research outputs found

    Non-canonical dorsoventral patterning in the moth midge Clogmia albipunctata

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.Background Bone morphogenetic proteins (BMPs) are of central importance for dorsal–ventral (DV) axis specification. They are core components of a signalling cascade that includes the BMP ligand decapentaplegic (DPP) and its antagonist short gastrulation (SOG) in Drosophila melanogaster. These components are very ancient, with orthologs involved in DV patterning in both protostomes and deuterostomes. Despite such strong conservation, recent comparative work in insects has revealed interesting differences in the way the patterning function of the DV system is achieved in different species. Results In this paper, we characterise the expression patterns of the principal components of the BMP DV patterning system, as well as its signalling outputs and downstream targets, in the non-cyclorrhaphan moth midge Clogmia albipunctata (Diptera: Psychodidae). We previously reported ventral expression patterns of dpp in the pole regions of C. albipunctata blastoderm embryos. Strikingly, we also find ventral sog and posteriorly restricted tkv expression, as well as expanded polar activity of pMad. We use our results from gene knock-down by embryonic RNA interference to propose a mechanism of polar morphogen shuttling in C. albipunctata. We compare these results to available data from other species and discuss scenarios for the evolution of DV signalling in the holometabolan insects. Conclusions A comparison of gene expression patterns across hemipteran and holometabolan insects reveals that expression of upstream signalling factors in the DV system is very variable, while signalling output is highly conserved. This has two major implications: first, as long as ligand shuttling and other upstream regulatory mechanisms lead to an appropriately localised activation of BMP signalling at the dorsal midline, it is of less importance exactly where the upstream components of the DV system are expressed. This, in turn, explains why the early-acting components of the DV patterning system in insects exhibit extensive amounts of developmental systems drift constrained by highly conserved downstream signalling output.This work was funded by the MEC-EMBL agreement for the EMBL/CRG Research Unit in Systems Biology, SGR Grant 406, from the Catalan funding agency AGAUR and by grants BFU2009-10184 and BFU2012-33775 from the Spanish Ministerio de Economia y Competitividad (MINECO). The Centre for Genomic Regulation (CRG) acknowledges support from MINECO, “Centro de Excelencia Severo Ochoa 2013-2017”, SEV-2012-0208

    Evolution and expression of BMP genes in flies.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tThis is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Bone morphogenetic proteins (BMPs) play key roles in development. In Drosophila melanogaster, there are three BMP-encoding genes: decapentaplegic (dpp), glass bottom boat (gbb) and screw (scw). dpp and gbb are found in all groups of insects. In contrast, the origin of scw via duplication of an ancestral gbb homologue is more recent, with new evidence placing it within the Diptera. Recent studies show that scw appeared basal to the Schizophora, since scw orthologues exist in aschizan cyclorrhaphan flies. In order to further localise the origin of scw, we have utilised new genomic resources for the nematoceran moth midge Clogmia albipunctata (Psychodidae). We identified the BMP subclass members dpp and gbb from an early embryonic transcriptome and show that their expression patterns in the blastoderm differ considerably from those seen in cyclorrhaphan flies. Further searches of the genome of C. albipunctata were unable to identify a scw-like gbb duplicate, but confirm the presence of dpp and gbb. Our phylogenetic analysis shows these to be clear orthologues of dpp and gbb from other non-cyclorrhaphan insects, with C. albipunctata gbb branching ancestrally to the cyclorrhaphan gbb/scw split. Furthermore, our analysis suggests that scw is absent from all Nematocera, including the Bibionomorpha. We conclude that the gbb/scw duplication occurred between the separation of the lineage leading to Brachycera and the origin of cyclorrhaphan flies 200-150 Ma ago.This research was funded by the MEC/EMBL agreement for the EMBL/CRG Research Unit in Systems Biology, by AGAUR SGR grant 406 and by Grants BFU2009-10184 and BFU2009-09168 from the Spanish Ministry of Science and Innovation (MICINN). EJG is supported by ERASysBio+ Grant P#161 (MODHEART). AAC acknowledges the contribution of an internship by the Caixa Catalunya savings bank, which first brought her into contact with the Jaeger lab. Genome and transcriptome sequences used in this study were acquired, assembled and annotated in collaboration with the Genomics and Bioinformatics Core Facilities at the CRG. We thank Brenda Gavilán for the help with maintaining fly cultures

    Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita.

    Get PDF
    Published onlineJournal ArticleThis is the final version of the article. Available from eLife Sciences Publications via the DOI in this record.The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring 'quantitative system drift'. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution.Ministerio de Economía y Competitividad MEC/EMBL Agreement/ BFU2009-10184/ BFU2012-33775/ SEV-2012-0208 Agència de Gestió d'Ajuts Universitaris I de Recerca SGR Grant 406 European Commission FP7-KBBE-2011-5/289434 National Science Foundation IOS-0719445/IOS-112121
    corecore